The generator matrix 1 0 1 1 1 X 1 1 X^2 1 1 0 1 1 X^2+X 1 1 X^2+X 1 1 1 1 1 1 1 1 1 1 1 1 0 X^2 X^2+X 0 1 1 X^2 X+1 1 X X^2+1 1 0 1 1 X^2+X X^2+X+1 1 X^2+X X^2+X+1 1 0 X^2+X X^2 X^2 X X X X^2 0 X^2+X+1 X^2+X 1 1 0 1 0 0 X X^2+X X^2 X^2+X X 0 X X^2 X^2+X X^2 0 X 0 X^2 X^2+X X^2 X^2+X X X^2 0 X^2+X X^2 0 X X 0 X^2+X X^2 X^2+X 0 X generates a code of length 33 over Z2[X]/(X^3) who´s minimum homogenous weight is 32. Homogenous weight enumerator: w(x)=1x^0+189x^32+64x^36+2x^48 The gray image is a linear code over GF(2) with n=132, k=8 and d=64. As d=64 is an upper bound for linear (132,8,2)-codes, this code is optimal over Z2[X]/(X^3) for dimension 8. This code was found by Heurico 1.16 in 9.37 seconds.